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Abstract

Computational approaches to drug design are presently hindered by the complexity of the physical chemistry
which underlies weak, non-covalent interactions between protein targets and small molecule ligands. Although a
number of programs are now available for the design of novel potential ligands, it remains a key problem to rank
these rapidly and reliably by estimated binding affinity. Such a step is necessary to select only the most promising
candidates for synthesis and experimental characterisation. To calculate ligand affinity quickly and reliably is an
extremely difficult problem, but it may well prove possible to estimate sufficiently accurately given an appropriate
set of parameters to ‘score’ individual protein–ligand interactions. Improvements in the situation will require a
wider set of thermodynamically characterised systems than is currently available.

Introduction

The past decade has seen considerable advances in
computer-aided ligand design and computational stud-
ies are now making a large impact on the drug de-
sign process and helping to direct the search for new
pharmaceuticals [1,2]. A variety of programs is now
available to find new drug leads either by database
searching or from fragment fitting. These methods can
rapidly generate a large array of potential ligands, far
too many for the chemist to synthesize or study by
computer simulations requiring days of CPU time. A
computational drug design programme therefore tends
to arrive at a bottleneck at which it is necessary to
select a limited number of molecules for further analy-
sis. This problem has generated considerable interest
in developing methods to calculate ligand affinity reli-
ably for a widely diverse group of molecules binding
to some target protein of known structure. Despite the
large body of research currently directed towards im-
proving our understanding of the relationship between
the structure of macromolecule–ligand complexes and
the affinity of interaction, it remains difficult to cal-
culate ab initio the affinity from the structure. The
field of affinity estimation is too large to be covered

in this paper and current approaches to the problem
have already been summarised elsewhere [2–8]. The
most rigorous methods such as the free energy per-
turbation method (FEP) require molecular dynamics
simulations and are therefore too time-consuming for
initial screening, not merely due to the calculations
but also the need for the intervention of a skilled
chemist. In calculating the affinity of streptavidin for
biotin, Miyamoto and Kollman ran five simulations,
the first runs to determine which restraints to place
on the system [9]. Even so, the1G of binding is
overestimated because of the approximations in the
treatment of conformational flexibility, the incom-
plete hydration and the restraints on hydrogen bond-
ing. Despite the considerable computational power
brought to bear by these methods the results of such
simulations are not always consistent. For example,
Cieplak and Kollman suggested that certain inhibitors
of HIV-1 protease could be improved by replacing the
main chain amides with hydrophobic groups [10], but
Gustchina et al. found that the hydrogen bonds formed
by these atoms contributed over half of the binding
energy [11]. Although the FEP method has worked
well in a number of cases comparing related ligands,
it is unlikely to become useful in lead selection from
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thousands of computer-generated test ligands. An au-
tomatic procedure is needed which requires neither
human intervention nor dynamical simulation. In other
words the problem must be reduced to one of Euclid-
ean geometry, counting atomic contacts of different
types between ligand and protein and multiplying by
a suitable weight to give a summed free energy. Such
weights are generally known as ‘scoring functions’.

Scoring functions

Rather than calculate ligand affinity from first princi-
ples, a scoring function instead estimates the tightness
of binding from structural parameters of the complex.
One of the first attempts to make such an empir-
ical connection between structure and energy was
by Eisenberg and Maclachlan, who devised a sim-
ple additive scheme to estimate the solvation energy
of different molecules from the exposed surface area
of different atom types [12]. The most widely used
scoring function for affinity estimation is LUDI, writ-
ten by Böhm [2,13], which has inspired several other
programs. The philosophy behind the program is rel-
atively simple, the overall free energy of binding
being broken down into contributions from hydrogen
bonds, ionic interactions, apolar contacts and entropy
penalties for fixing rotatable bonds and making one
molecule from two. Such methods largely or com-
pletely ignore changes in the protein on ligand binding
since only the structure of the complex is consid-
ered. They are therefore much more likely to work
well with relatively rigid proteins. Obviously the de-
termination of appropriate weights requires a database
of reliable structures of the protein–ligand complexes
and the affinity of each. Böhm used a dataset of 45
different protein–ligand complexes to determine ap-
propriate weights for LUDI. More than half of these
are proteases, several of which are represented four or
more times, so there is clearly scope to increase the
number and variety of proteins in the dataset presently
available to modellers. Five rather different weighting
schemes in LUDI were found to reproduce the basis
set of affinity measurements with notable accuracy.
This insensitivity to the scoring weights highlights the
need for more thermodynamic data on a wide range of
protein–ligand systems.

Three points are worth making about scoring func-
tions. Firstly, they imply that each occurrence of a
basic interaction being considered is equivalent. For
example, all hydrogen bonds between neutral donor
and acceptor atoms may score 4 kJ mol−1 or whatever,

possibly with some correction made for the geometry
of the groups involved. This may hold true on average
over related structures but there are many instances
where it does not. Cooperativity between different in-
dividual interactions can make it rather more difficult
to estimate the overall free energy of binding. For ex-
ample, the two triply hydrogen bonded systems shown
in Figure 1 have very different affinities. Subtle elec-
trostatic interactions make it much more favourable in
this case to arrange all the hydrogen bond acceptors
on one molecule and the donors on the other. DNA is
another example of a multiply hydrogen bonded sys-
tem. It has long been known to molecular biologists
that they can calculate the melting temperature (TM )
in ◦C of short oligonucleotides by the Wallace rule:
multiply the number of GC base pairs by 4 and add
the number of AT pairs times 2 [14].

TM(
oC) = 4 ∗ (GC)+ 2 ∗ (AT )

This works very well for oligonucleotides between
8-mers and 18-mers (which form roughly one to two
turns of double helical DNA with their complemen-
tary strand) but not for much longer pieces of DNA.
The Wallace rule would predict a human chromosome
to have aTM of roughly 108–109 ◦C, so clearly some
correction is required to extend it to very long DNA.
Modellers should also note the results of Clackson and
Wells [15] who showed that there is a marked ‘hot
spot’ of binding energy on growth hormone receptor.
Their results show that ‘structural parameters such as
buried surface area did not correlate well with the
energetic importance of individual residues’. This is
also an example where the sum of the contributions
of individual residues greatly exceeds the overall free
energy of binding. This phenomenon of non-additivity
was noted earlier by Jencks [16]:
‘ It is not unusual to find that the binding of individual
molecules A and B is weak or negligible, but AB binds
well, so that the whole seems to be greater than the
sum of the parts. It is frequently assumed that the ob-
served Gibbs binding energies of two molecules A and
B are additive in the molecule AB so that

1GAB = 1GA +1GB (1)

There is no basis for this assumption. The loss of en-
tropy on combining A and B by a covalent bond can
be as much as−40 cal mol−1 K−1 and some unpre-
dictable fraction of this difference will appear in the
binding of AB compared to A and B.’
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Figure 1. Multiply hydrogen bonded systems designed to test the contributions of hydrogen bonds to binding affinity. Despite the very similar
chemistry of the two systems shown in (a) and (b), it is found that the affinity is approximately three orders of magnitude higher for (a) where
one molecule carries all the hydrogen bond donors and the other all the acceptors (DDD:AAA). Unfavourable electrostatic interactions occur
between the donor and acceptor atoms in (b) as these are arranged alternately (DAD:ADA), greatly lowering the affinity. This effect is probably
rather greater in these model systems than in proteins as the experiments are conducted in organic solvent rather than water. Data taken from
[62].

A clear hurdle in the construction of scoring func-
tions is to justify the additivity on which they are
based, an assumption which often passes without com-
ment. The increase in binding energy of AB over A is
dependent on how well the two parts of AB fit into
their respective binding sites. If there is no strain in
the link between A and B, and each part adopts its
most favoured position, then this increase is equal to
the intrinsic binding energy of B.

Secondly, in constructing a scoring function a
modeller aims to reproduce the experimentally deter-
mined affinity or free energy of binding (1G) while
ignoring the experimental conditions. In fact, the great
majority of protein–ligand binding processes will in-
volve a significant change in heat capacity (1Cp)
and so both1H and 1S will vary with tempera-
ture, not to mention pH and ionic strength. Fortunately
due to enthalpy-entropy compensation, which is often
highly pronounced for weak, non-covalent interac-
tions such as those between a protein and its ligand,
1G remains relatively unaffected as1H and1S al-
ter. In building a function to score (1H − T1S)
the modeller implicitly relies on this phenomenon.
It is perfectly possible however for the energy of
ligand binding to change markedly over a range of
conditions in which the structure appears invariant.
This is true of haemoglobin, whose oxygen affinity is
strongly dependent on the presence of chloride ions or
polyethylene glycol [17,18], although these molecules
are not found in electron density maps. It should be
noted that the overall observed enthalpy or entropy of

binding cannot in general be used to judge whether
association is driven by electrostatic or hydrophobic
interactions. This is not only because of enthalpy-
entropy compensation but also because such numbers
include all processes on ligand binding, such as pro-
tonation or deprotonation of the buffer. Many ligand
binding processes are sensitive to pH (hence the use of
buffer in the reaction mixture), implying that protons
are captured or released on ligand binding. The affinity
may well be unchanged on replacing Tris buffer with
phosphate (which has a much lower heat of protona-
tion) but the observed1H may change considerably.
This effect can be used to measure proton uptake, but
is of little use to the computer modeller. Miyamoto
and Kollman [9] speak of a conflict between data sug-
gesting biotin binds streptavidin through hydrophobic
interactions and the observed negative entropy of bind-
ing. There is no conflict in such data. Measurements of
enthalpy or entropy can be compared usefully only be-
tween similar ligands binding to a given protein under
the same experimental conditions.

Thirdly, the use of rigid protein and ligand must
be accounted for. Fortunately it appears that freezing
rotors seems to entail the same entropy penalty for
each rotatable bond. Page and Jencks calculated an en-
tropy change per internal rotation of 4–5 entropy units
(cal mol−1K−1) for hydrocarbon cyclisation, equiva-
lent to a free energy cost of 5–6 kJ mol−1 at room tem-
perature [19]. Böhm employs a significantly smaller
number in LUDI, 1.4 kJ mol−1. The cost of fixing
protein side chains in single conformations on protein
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folding also seems to be reasonably constant for each
residue type [20]. There is some disagreement in the
literature about the best method of accounting for the
loss of six degrees of freedom by the small ligand on
binding to the protein (the same rotational and trans-
lational freedom familiar to the crystallographer who
uses molecular replacement). Page and Jencks esti-
mate on the basis of Trouton’s rule that making one
molecule from two will involve a considerable entropy
cost of 50–70 kJ mol−1, but this loss will be com-
pensated to some extent by low frequency motions in
the product [19]. Janin has used the Sackur–Tetrode
equation to derive a similar figure, about 63 kJ mol−1,
with a small dependence on ligand size [3]. The use
of this equation (developed for simple gases) has been
disputed but given the rough agreement between this
method and the estimate made by Page and Jencks it is
probably better than ignoring the effect altogether. Er-
ickson estimates the cost to be 7–11 kcal mol−1 [21].
This smaller figure may represent the entropy gain in
the complex from vibrational modes absent in the free
protein [22]. The entropy penalty used by LUDI is
much smaller, 5.4 kJ mol−1. If the term is considered
to vary only very slightly with ligand size then clearly
it plays little part in ranking different ligands, but in
order to estimate the actual binding affinity this term
must be considered. LUDI greatly overestimates the
ligand affinity of the peptide binding protein OppA,
probably largely as a result of the underestimate of
the entropic factors involved [23; J. Bray and J.R.H.T.,
unpublished results].

To overcome the problem of deriving weights from
experimental measurements, several groups have as-
signed free energy scores to interactions by estimating
atomic contact energies from a statistical analysis of
atom pairing frequencies, a technique first used to
analyse protein folds [24–27]. These functions are
generally known as ‘knowledge-based potentials (of
mean force)’. The use of these potentials has been
critically discussed by BenNaim [28]. Since the base
set of structures used by Delisi and co-workers to de-
termine the contact energies are protein structures, it is
an inherent assumption of their approach that the same
energy function can be used for protein folding and
ligand binding [26,27]. They neglect the contribution
of van der Waals forces to binding since they assume
it is the same for protein–ligand interactions as for
protein–water interactions. The final calculated energy
of binding or folding includes the contact energy, an
electrostatics term and an entropy term. Computation-
ally the Delisi method suffers from the disadvantage

of requiring coordinates for hydrogen atoms, which
are placed in the structures using energy minimisa-
tion, but otherwise it is undemanding in terms of CPU
time. This method permitted the calculation of the
affinity of nine endopeptidease–inhibitor complexes
with reasonable accuracy, within 10%. Comparing this
method with LUDI there are some notable differences
in the weighting schemes; for example, the contact
energy for a nitrogen-carbonyl bond is favourable for
a backbone nitrogen but unfavourable for a side-chain
nitrogen. LUDI scores such hydrogen bonds equally
with a value of−4.7 kJ mol−1 [2,13]. This differ-
ence reflects the entropy cost of holding a side chain
in place on protein folding, included implicitly in the
contact energy derived by the Delisi group, but it is
not clear that this is appropriate when considering
a ligand fitting into a preformed binding site [29].
Verkhiver and colleagues have derived a knowledge-
based potential from the crystal structures of HIV-1
protease–inhibitor complexes [25]. They considered
only contacts between non-hydrogen atoms and calcu-
lated the desolvation energy using the empirical scale
derived by Eisenberg and Maclachlan [12]. This model
provided good correlation between the observed and
calculated binding affinities.

Protein–protein association

Proteins associate by forming the same types of in-
teractions that they form with small ligands. Horton
and Lewis [30] derived an energy function from an
analysis of 24 protein complexes and their dissociation
constants, basing their function on the solvation para-
meters derived earlier by Eisenberg and Maclachlan
[12]. The total free energy of binding is broken down
into three terms, the solvation of polar and apolar
groups, and the rotational-translational entropy cost.
Least-squares fitting was used to derive the weights for
the two solvation parameters and the entropy penalty
of association. The energy function reproduced the ba-
sis dataset with a correlation of 96%, and predicted
with acceptable accuracy the affinity of trypsin and
subtilisin for inhibitors. The energy contribution of ap-
olar surfaces was found to be close to the 24 cal mol−1

per Å2 estimated much earlier by Chothia [31] and
the rotational-translational entropy cost was found to
be close to Erickson’s estimate [21]. Hydrogen bonds
were found to be much weaker than other estimates,
averaging−0.24 kcal mol−1, a third to a sixth of the
value derived from side-directed mutational analysis
by the group of Fersht [32]. An analysis of the dimer–
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tetramer equilibrium of haemoglobin mutants by Val-
lone et al. also showed that the energy of association
is well predicted by the Eisenberg and Maclachlan
model, but they derived a different value for the free
energy cost of solvating 1 Å2 of apolar surface area,
about 15 cal mol−1 [33].

Problems to be overcome in affinity estimation

While it appears relatively simple to derive scor-
ing functions which reproduce the basis dataset from
which they are derived, it has proved rather more diffi-
cult to find a predictive algorithm which handles novel
ligands reliably. This is not due to the errors in atomic
coordinates in well-refined X-ray crystallography and
nuclear magnetic resonance (NMR) models. Certainly
these errors are considerable on an energy landscape –
even in a protein crystal structure solved to moderately
high resolution the coordinate errors of the most accu-
rately positioned non-hydrogen atoms may be 0.2 Å,
so the distance between hydrogen bonded N and O
atoms will have an even larger error, quite significant
in terms of the stability of the hydrogen bond. Bet-
ter structural data are unlikely however to make much
difference in many cases – it is just as hard to estimate
the affinity of an interaction whether the complex has
been refined to 1.0 Å or 2.5 Å resolution. Although
the errors in atomic positions may seem large, they
are in fact smaller than the thermal vibration implied
by the temperature factors in X-ray crystallographic
structures. An atom with a temperature factor (B) of
20 Å2 would be considered reasonably well ordered,
but since

B = 8π2ū2 (2)

whereu is the mean deviation from the average posi-
tion, its rms deviation is still around 0.5 Å. Thermal
vibration will be no smaller in solution (the state of
interest) than in a crystal. Since we are interested in the
free energy change of ligand binding, which is a bulk
property, it is appropriate to use the average positions
of atoms anyway, which is what an X-ray or NMR
structure represents. To rank computer-generated lig-
ands correctly the affinity estimation program must be
able to position novel ligands within the binding site
and optimise their interactions with the target protein.
The errors in this calculated position are unlikely to
be smaller than those of the coordinates of the protein
atoms, so the estimation of affinity must be able to ac-
commodate small deviations in atom positions. Rather
than the limited precision of structural methods, the

problem of affinity estimation lies in our limited un-
derstanding of the physics and thermodynamics of
ligand binding by biomolecules. The physical chem-
istry underlying non-covalent molecular association in
water is highly complex, and it is clear that our un-
derstanding of the forces which drive it must improve
if affinity estimation methods are to give quantitative
agreement with experimental results.

The forces involved in ligand binding

The significant forces acting on molecules in aque-
ous solution are well known and generally broken
down into four groups, hydrophobicity, van der Waals
forces, hydrogen bonds and electrostatic interactions.
The definitions of these forces are to some extent ar-
bitrary. (Of the four forces known to physics only
electromagnetism is relevant here.) Hydrogen bond-
ing is electrostatic in origin, but usually considered
in isolation because of its strongly directional na-
ture and the difficulty in accurately assigning partial
charges to the atoms involved. Considerable research
has been devoted to this interaction, which is gen-
erally (but not universally) considered to favour lig-
and binding or protein folding, more so if one or
both of the acceptor and donor atoms is/are charged.
Interactions between charges or dipoles lead to an
electrostatic energy which is given by the familiar
Coulomb equation. Electrostatics has been an area
of great interest in recent years, much attention fo-
cussing on the linearized Poisson–Boltzmann equation
[34]. The calculated strength of charge-charge inter-
actions is however strongly dependent on the chosen
value or function used for the dielectric constantε and
a variety of distance-dependent expressions or fixed
values are employed by different authors. Electro-
static effects in macromolecules have recently been
reviewed by Warshel and Papazyan [35]. Van der
Waals forces were originally invoked to explain the
deviation of real gases from ideal behaviour. The term
is now used to include induction energy (which arises
from polarisation of a molecule in an applied elec-
tric field) and dispersion forces, which are quantum
mechanical in nature but arise largely from induced-
dipole:induced-dipole interactions. The energy of both
types of interaction falls off approximately with the
sixth power of the molecular separation. Hydropho-
bicity, the anomalously low solubility of hydrocarbons
in water, may be defined in a number of almost equiv-
alent ways which has led to considerable debate as to
the cause of the effect. It may be defined in terms
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of solubility or free energy of transfer from gas or
liquid phase to water (1G). Traditionally it has been
regarded as arising from the entropic penalty in solvat-
ing apolar surfaces, but 10 years ago Privalov and Gill
suggested instead that ‘the hydrophobic interaction
is caused by the van der Waals interactions between
the non-polar molecules’ [36]. This ‘new view’ of
hydrophobicity is fraught with difficulties and gener-
ally dismissed. Computer modelling studies support
the model put forward by Muller [37] in which water
molecules in the bulk solvent form more but weaker
hydrogen bonds than those in contact with apolar sur-
faces [38]. Thus, although the types of non-covalent
interactions which occur between proteins and ligands
are known, there has been a great deal of confusion
in the literature about their relative importance and
even the sign of their contribution to binding. This
is true for each of the four forces listed above except
van der Waals interactions between protein and ligand,
which are generally considered favourable to binding
but are ignored by some authors on the grounds that
they are equally favourable with solvent. The diver-
gence of views on some of these issues is shown by
quotes taken from relatively recent publications:

‘If the anecdotal evidence so far is verified, the
rather global implication is that electrostatic interac-
tions tend to favour the unfolded states of macromole-
cules and the unbound states of complexes. This would
imply that the thermodynamic driving force for most
processes in aqueous solution results from ‘non-polar’
interactions such as the hydrophobic effect and close
packing’[34].

‘Just the opposite: the hydration of non-polar
groups increases the solvation tendency of these
groups in water and destabilises the compact protein
structure which is in fact stabilised by van der Waals
[forces] and hydrogen bonding of the tightly packed
amino acid residues’[36].

Obviously affinity estimation will be difficult if
there is disagreement over the sign of the free energy
contributions of different interactions.

The contribution of hydrogen bonds to ligand bind-
ing has been studied by a number of groups. Fer-
sht found that the loss of a typical hydrogen bond
cost about−0.5 to −1.8 kcal mol−1 [32]. A much
larger value of−24 kJ mol−1 was determined by
Williams’ group in their analysis of peptides bind-
ing to antibiotics [39], but this was later found to
be spuriously high due to a hydrophobic interaction
which had been overlooked [40]. Nevertheless, us-
ing the value of−24 kJ mol−1 per hydrogen bond,

Williams and co-workers managed to account suc-
cessfully for the binding affinities of two peptides to
two antibiotics. This highlights the important point
that self-consistency alone is not an adequate test of
a set of free energy parameters. It also emphasises
the difficulties in deriving such parameters from ex-
perimental measurements. A large number of papers
have been published on the energy contribution of the
hydrophobic effect, current estimates ranging from 4
to 32.5 cal mol−1Å−2 [41]. Clearly we have yet to
reach a consensus on the relative contributions of dif-
ferent interactions to ligand binding. A key problem
is to collect sufficient suitable experimental data to as-
sess the contributions of different interactions to the
overall observed free energy change of binding. Un-
like X-ray crystallography and NMR, the methods for
studying the function of proteins have undergone rel-
atively little development in recent years and several
techniques used today have remained unchanged for
decades. Thus, while the number of macromolecular
structures held in the Brookhaven DataBank contin-
ues to grow exponentially and currently exceeds 6000,
accurate affinity measurements have been made for a
far smaller number.

Experimental determination of binding constants

How are affinity measurements made? Traditionally
binding constants have been measured by techniques
such as filter binding, equilibrium dialysis, and spec-
troscopic methods in which the ligand is titrated
against the macromolecule. The concentration of lig-
and giving half-maximal occupancy of binding sites is
determined graphically, for example using Scatchard
plots. Filter binding assays and equilibrium dialysis re-
quire a radioactively labelled ligand and depend on the
measurement of radioactivity counts. In recent years
there has been a strong movement away from the use
of radioisotopes, partly due to safety considerations
and partly due to the difficulties in obtaining suitably
labelled ligands. Spectroscopic methods such as the
use of fluorescence to monitor ligand binding have
been very successful in characterising biomolecular
interactions. It is often possible to use the intrinsic
fluorescence of tryptophan and tyrosine residues of
proteins to monitor binding or conformational changes
but this is not invariably true, and a chromophore or
fluorophore may have to be attached to one of the part-
ners in the interaction being studied in order to provide
a measurable signal. The sensitivity of fluorescence
measurements can allowKd ’s as low as 10−11 M to
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be measured in favourable cases. These methods have
the advantage of using relatively little material, but
since the dissociation constant is measured accurately
only at roughly equivalent concentrations ([P]≈ Kd )
the measured signal is often relatively small, intro-
ducing significant errors. Weber estimates that few
measurements ofKd made by such techniques are
accurate to better than 50% [42]. Analytical ultra-
centrifugation (AU) is a well-established method but
fell into increasing disuse throughout the 1970s and
1980s. There has been some renewal of interest with
the appearance of the Beckman XL-A and XL-I ma-
chines which are more user-friendly than their prede-
cessors [43]. Equilibrium sedimentation experiments
can yield affinity measurements in the range 10−3 M
to 10−8 M. Importantly, AU requires no modification
of the macromolecule or ligand under consideration.
Two new techniques for affinity measurement have
appeared in the last few years, microcalorimetry and
surface plasmon resonance (SPR). Although calorime-
try itself is an old method, the appearance of highly
sensitive machines in the past 10 years has trans-
formed its application to biomacromolecules. The use
of isothermal titration calorimetry (ITC) to measure
protein–ligand interactions has been reviewed recently
[44]. The heat generated (or absorbed) as ligand is
injected step-wise into a sample of the macromole-
cule yields the binding constant and molar enthalpy
change of the interaction directly. In practice, ITC can
measure dissociation constants in the range 10−3 to
10−9 M. Up to about 100-fold tighter binding can be
measured by displacement techniques. Very lowKd ’s
(high binding constants) can be measured using dif-
ferential scanning calorimetry (DSC), for exampleKd
for soy bean trypsin inhibitor binding to trypsin was
found to be 5× 10−14 M by this method, and even
higherKd ’s should be obtainable [45].

ITC has the advantage over other techniques of
affinity measurement that it measures the enthalpy
change directly. Plotting the heat pulse for each injec-
tion against injection number gives a sigmoidal plot
whose shape is determined byKd . Knowing the con-
centration of the macromolecule, the ligand and the
heat of dilution (which is subtracted from all injection
heats) thenKd and1H may be obtained by a simple
curve fitting algorithm.

Using the relationship

RT lnKd = 1G0 = 1H − T1S (3)

it is possible to calculate1S. A single experiment is
therefore all that is needed in principle to provide a

complete thermodynamic characterisation of a binding
process at a given temperature.

If the experiment is performed over a range of
temperatures then the change in heat capacity at con-
stant pressure1Cp can be calculated. This is often
constant within error over a temperature range within
which mesophilic proteins are stable. Assuming1Cp
is temperature-independent then

1Cp = 1HT 2−1HT 1

T 2− T 1
(4)

where T 1 and T 2 are two different experimental
temperatures (in Kelvin).

SPR has rapidly become a widespread method
since the introduction of the first commercial instru-
ment in 1990, despite its high cost. The physical
principle of the method is discussed by Garland [46].
The macromolecule of interest is attached to a gold
foil and the ligand is passed over it, binding being
detected by a light beam reflected from the opposite
side of the metal foil. Essentially the method measures
changes in the refractive index of the solution close
to the foil, which increases as ligand attaches to the
immobilised protein. The method is very rapid, allow-
ing fast screening of potential ligands for a protein.
Since the binding and dissociation steps are monitored
separately, the machine also permits kinetic analysis
of the interaction. The accuracy of the kinetic data
obtained in this way has been questioned [47] but such
experiments may be useful if one wishes to screen for
ligands with particular kinetic properties. (It is not al-
ways appreciated that the on and off rates may be as
physiologically important as the overall ligand affin-
ity. For example, it is believed that the dissociation
rate of oxygen from haemoglobin must lie within a
fairly narrow window if the protein is to transport the
gas efficiently.) A large and growing number of pa-
pers have appeared in which affinity data are measured
by this technique. Although the method essentially
measures a change in density at the metal surface it
has successfully been used with ligands as small as
180 Da.

No single method of protein–ligand affinity mea-
surement has universal application, which partly ex-
plains why few systems have been measured by more
than one method. This would probably be a useful
check to show that the numbers produced agree. Cer-
tainly the errors in the methods are considerable, a
value within 10% being the exception rather than the
rule [42].
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Heat capacity

The strongest correlation noted so far between the
thermodynamics of biomacromolecular interactions
and the structures of the molecules is between the sur-
face area buried by complex formation and1Cp. The
removal of hydrophobic surfaces from contact with
water leads to a large negative1Cp first noted by
Edsall in 1935. Simple models based solely on the
polar and apolar surface area buried on ligand binding
generally predict1Cp fairly well, although there are
exceptions in which a large number of water molecules
is found at the ligand binding site. Vibrational modes
of the molecules under consideration, which are of in-
terest from an entropic point of view, may also have a
significant influence on1Cp [22].

The importance of1Cp lies in the fact that this
parameter controls the variation of both1H and1S
with temperature according to the following expres-
sions:

1H(T1) = 1H(T0)+1Cp(T1− T0) (5)

S(T1) = S(T0)+ Cp(ln T1

T0
) (6)

Since1H andT1S move in the same direction as
T varies their changes largely cancel, leaving1G
relatively temperature-invariant (over the temperature
range of interest). This effect, known as enthalpy-
entropy compensation, is observed throughout chem-
istry but is particularly marked in weak interactions
in aqueous solutions. Dunitz has suggested that it is
strongest for interactions with roughly the strength of
a hydrogen bond [48]. Entropy-enthalpy compensa-
tion and the temperature variation of1H andT1S
make it impossible to consider polar or apolar inter-
actions as purely enthalpic or entropic, respectively.
Several authors appear to use these pairs of terms al-
most interchangeably. Interactions between charges
may appear to be governed by the enthalpy term but
there are many examples where this is not the case.
For instance the ionisation of a carboxyl group is
nearly isenthalpic (1H = 0) under normal condi-
tions due to the strong solvation of the carboxylate
group, demonstrating the importance of water in the
thermodynamics of proteins.

Water

Water is a deceptively complex liquid whose behav-
iour is dominated by its strong intermolecular hy-
drogen bonding [49]. This greatly complicates the

Figure 2. A view of the second side-chain pocket of the oligopep-
tide binding protein OppA, showing four overlapped structures.
These are the complexes of the protein with Lys-Lys-Lys (blue),
Lys-Trp-Lys (red), Lys-Glu-Lys (green) and Lys-Ala-Lys (yellow).
The water molecules are shown as appropriately coloured spheres.
It can be seen that different side-chains on the second residue of the
ligand, shown in the centre of the figure, displace different numbers
of water molecules from the pocket and form different interactions
with the protein [23].

estimation of ligand affinity since the different sol-
vation of the AB complex and the free partners A
and B must be taken into account. It is sometimes
assumed that the exclusion of water from a binding
site by a ligand is invariably favourable, due to the
entropic contribution of the release of solvent mole-
cules from the protein surface. This is not the case,
however. Water molecules held in the binding site will
give rise to a negative (unfavourable) change in en-
tropy. The precise cost will depend on the interactions
formed but it has been estimated from experiments
on the water of hydration of crystal salts to be 10
to 30 J mol−1K−1 per water molecule [50]. The free
energy (T1S) contribution is therefore comparable to
the enthalpy of formation of a hydrogen bond. Water
molecules trapped in the binding interface between a
protein and its ligand are not necessarily hindrances to
ligand binding; the enthalpic contribution they provide
through hydrogen bonding may outweigh the entropic
cost of restricting their freedom of movement. This
can be seen in some antibody–antigen complexes. An-
tibodies which have been selected on the basis of their
affinity for a particular ligand are sometimes found
to have very large numbers of waters at the ligand
interface [51].

Water also plays an important role in a system
being used at York to examine structure-energy rela-
tionships, the oligopeptide binding protein from Gram
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negative bacteria, OppA. This binds to small peptides
up to five residues long with little regard to sequence
[23,52]. Peptide binding is driven by the protein form-
ing hydrogen bonds with the invariant main-chain
atoms of the ligand. The side-chains of the ligand are
accommodated in large hydrated pockets, small side-
chains displacing fewer water molecules than large
ones (Figure 2). The water molecules act as flexible
adapters to allow the side-chain pockets to accept a
variety of chemical groups. By challenging the protein
with different (natural and non-natural) peptides it is
intended to build a scoring function for the interactions
observed in the crystal structures. For the small num-
ber of peptides tested there is no correlation between
the size of the ligand side-chains and the affinity, so the
expulsion of more water from the binding site does not
improve the interaction. In other cases the expulsion of
a water molecule from the binding site does contribute
favourably to the affinity through an increase in en-
tropy [53]. Water molecules are often found to mediate
interactions between proteins and ligands, and are
found to be well conserved in homologous structures
[54]. Since they can clearly contribute to ligand bind-
ing they should not be ignored, and it has even been
suggested that to engineer water binding sites may be
a useful tool in drug design [55]. Attempts to improve
drug binding by expelling water molecules from the
binding site with hydrogen bonding groups are not
always successful, an interesting example being the
HIV protease inhibitors tested by Mikol et al. [56].
In spite of the evidence pointing to the importance of
water and solvation in ligand binding by proteins in
an aqueous environment it is still often neglected in
many studies. The ligand scoring function of Jain [57]
includes a solvation term which amounts to only 5%
of the overall calculated free energy of binding. This
is too small, but perhaps better than ignoring solvation
altogether.

Conclusions

Ligand affinity estimation remains a complicated
problem, despite the growing number of complex
structures available and ever-increasing computer
power. Several scoring functions have been described
which appear to reproduce well the binding energy of
the basis dataset and related protein–ligand systems.
Since the reported errors are on a par with the ex-
pected experimental error it appears superficially that
the problem of rapid affinity estimation is solved. Un-
fortunately the predictive power of the methods falls

short of their statistical performance [4] and different
scoring functions show wide variation in the relative
weight given to different interactions, so there is still
considerable room for improvement in the understand-
ing of the ligand binding process [58]. Personally I
prefer attempts to derive the free energy of different ef-
fects from established chemical thermodynamics, for
example the entropy of phase transitions or cyclisation
[16,40,58], to those which use regression alone to find
these parameters. In fitting weights to experimental
data it is important to make sure that the values arrived
at are chemically reasonable, not least because it is
possible to derive a number of schemes which predict
1G to within 10–15% of the experimental value, es-
pecially if using a large number of parameters. This
is probably the closest a general scoring function can
be expected to come to the ‘true’ value, given the
inherent assumptions in the method. At present there
is little consensus however on what a hydrogen bond
or a square Å of apolar surface area is ‘worth’. Di-
rect comparison of different schemes with the same
protein–ligand systems is necessary in order to assess
their relative merits.

It is unlikely that binding processes involving flex-
ible proteins or large conformational changes will
be modelled well from consideration of the complex
alone. This is shown by the fact that scoring func-
tions predict very similar binding energy for trypsin
and trypsinogen binding to BPTI [60]. Both form very
similar contacts with the inhibitor, but trypsinogen
binds more weakly by orders of magnitude. It has
been suggested that this is due to a conformational
change of trypsinogen on ligand binding but may also
be partly due to the greater flexibility of the zymo-
gen compared to the mature protease. Where sufficient
structural and experimental data have been collected
for a particular protein or class of proteins it may prove
possible to construct a tailor-made scoring function, as
has been done with HIV protease [25,59]. This protein
is known to undergo conformational changes on lig-
and binding and it may well not behave according to
a model assuming rigidity. In the case of OppA the
protein adopts the same closed conformation for every
ligand, each of which presumably pays the same en-
tropic cost for restricting motion about the hinge; if
so then scoring functions should still manage to rank
ligands correctly. Gilson et al. have briefly described a
new class of models for estimating affinity which aim
to be faster than molecular dynamics but which take
account of conformational change [61]. They point out
that scoring functions are highly simplistic, in their
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view too much so. Clearly scoring functions should
be made as simple as possible, but not simpler. How
simple that is remains debatable, and may well depend
on whether the scoring function is intended for lead
selection or lead optimisation, speed being less im-
portant in the latter case. A universal scoring function
may well prove an impossible dream but there is a lot
to be learned in trying to build one. The differences in
the various methods described need to be addressed
by detailed studies on new protein–ligand systems.
The current set of data available is too small and lim-
ited, and the published affinity data is measured over
a variety of experimental conditions. An increasing
pool of examples of protein–ligand complexes, both of
known affinity and accurately characterised by X-ray
crystallography, will clearly be an essential element in
improving current scoring methods.
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