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Abstract

The use of simple linear mathematical models to estimate chemical properties is not a new idea. Albert
Einstein used very simple ‘gravity-like’ forces to explain the capillarity of different liquids in 1900–1901.
Today such models are used in more complicated situations, and a great many have been developed to
analyse interactions between proteins and their ligands. This is not surprising, since proteins are too
complicated to model accurately without lengthy numerical analysis, and simple models often do at least as
good a job in predicting binding constants as much more computationally expensive methods. One hundred
years after Einstein’s ‘miraculous year’ in which he transformed physics, it is instructive to recall some of his
even earlier work. As approximations, ‘scoring functions’ are excellent, but it is dangerous to read too
much into them. A few cautionary tales are presented for the beginner to the field of ligand affinity
prediction by linear models.

Introduction

Like all of Einstein’s very early papers, his first
recorded publication (in Annalen der Physik in
1901) concerned thermodynamics, and began with
the Second Law [1]. It concerns the energy
required to form surface area on liquids, which
Einstein set out to calculate from the chemical
formula. He wrote ‘‘I proceeded from the simplest
assumptions about the nature of molecular attrac-
tion forces and examined their consequences regard-
ing their agreement with experiment. In this I was
guided by the analogy with gravitational forces.’’
Essentially Einstein assumed that the attraction
between two atoms of types A and B was
proportional to the product of constants cA and
cB which were characteristic of the atoms, in
exactly the same way that planets and stars attract
each other according to their masses. Matter is
considered homogenous, and no account is taken

of molecules or chemical bonding, an explicitly
noted approximation. Nevertheless, Einstein man-
aged to reproduce an experimentally determined
quantity (related to the surface tension) for 17
compounds of carbon, hydrogen and oxygen by
assigning a single value to each atom type
(Table 1). An additional 24 compounds also con-
taining chlorine, bromine or iodine could also be
fitted handsomely into this scheme, given a con-
stant for each halogen. Typically, Einstein then re-
derived his data using a different phenomenon, in
this case heating by compression, and showed an
impressive agreement with the first results and a
different set of experimental data. He concluded
‘‘In summary, we may state that our basic assump-
tion has stood the test: To each atom corresponds a
molecular attraction field that is independent of the
temperature and of the way in which the atom is
chemically bound to other atoms.’’ All this is quite
impressive for a 22-year-old, especially one writing
5 years before Boltzmann committed suicide at his
inability to persuade fellow chemists that atoms
exist. Einstein used the same model in analysing
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the potential of metals and their salt solutions
2 years later before turning to general molecular
theories of heat. Somehow though, the planetary
model did not catch on in chemistry, and is no
longer used to the best of my knowledge.

Interest in calculating the strength of interac-
tions between molecules has grown much stronger
however throughout the 20th century and into this
one. Crystallography and NMR have allowed us
to determine the structures of many biological
molecules, but this is only half the story; Life is
crucially dependent on molecular binding – to the
right target, at the right time, in the right place,
with the right affinity, and (sometimes) at the right
speed. While methods in structural biology have
been developing very quickly for some years,
genomics appeared almost overnight. We now
know (or can find out) what a protein looks like in
most cases, and we can model many of the difficult
ones. To understand protein function, what is
needed is a way to predict the affinity of protein–
ligand interactions – the same problem faced by
chemists trying to design drugs. A variety of
groups from different backgrounds have therefore
come up with models to predict how tightly a given

protein will bind to a given small molecule. These
solutions vary widely in complexity, from simple
linear models to full-scale molecular simulations
requiring days of computer time. Since the drug
design (or lead search) problem requires many
molecules to be examined, the more lengthy routes
are ruled out. At first it may seem unlikely that a
very simple function can take into account the
complexities of the problem; proteins are flexible
polymers and the physical chemistry involved in
ligand binding in water is not trivial. Like Einstein
however, many groups have found that the
approximations involved in formulating a linear
model of few parameters need not prevent it from
performing admirably when applied to static
protein models. Basing a model on sound chemical
principles probably helps, but it is best to follow
Einstein and not interpret the model too deeply.

The problem

The problem is thermodynamics. How does
the system of interest attain maximum entropy
given the boundary conditions (usually constant

Table 1. Experimental and calculated values of Sca given by Einstein for various compounds.

Compound Formula Experimental Calculated

Limonene C10H16 510 524

Formic acid CO2H2 140 145

Acetic acid CO2H4 193 197

Propanoic acid C3H6O2 250 249

Butyric acid C3H6O2 309 301

Valerianic acid C5H10O2 365 352

Acetic anhydride C4H6O3 350 350

Ethyl oxalate C6H10O4 505 501

Methyl benzoate C8H8O2 494 520

Ethyl benzoate C9H10O2 553 562

Ethyl acetoacetate C6H10O3 471 454

Anisole C7H8O 422 419

Phenetole C8H10O 479 470

Dimethyl resorcinol C8H10O2 519 517

Furfural C5H4O2 345 362

Valeraldehyde C5H10O 348 305

d-carvone C10H14O 587 574

Einstein derived an expression relating atomic attraction to the surface tension c of a liquid at its boiling point. Each atom type is given
a single value, which can be simply summed using the molecular formula of a compound. The values of c derived by Einstein were:

cH=)1.6, cC=55.0, cO=46.8. The sum of these values (Sca) should, according to Einsein, equal
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c� T dc
dT

q

. Agreement between the

two columns of figures is very impressive, yet the model is extremely simplistic and ignores entirely any type of directional chemical
bond.
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temperature and pressure) in an experiment? The
macroscopic properties of the system which we
measure are the ones which correspond to the
configuration of the system with maximum
permutability. If we mix a protein and ligand in
solution, at equilibrium the bound and free ligands
will have the same free energy. The energy of the
system goes where the entropy tells it to; a reaction
may take in or give out heat, but it will always
produce entropy if left to itself and not driven by
outside influences. This is rather a problem for
simplistic calculations. Energy is a conserved quan-
tity, and rather intuitive. We can make models for
it, calculate it from force-fields, and divide it into
different categories called ‘Heat’ or ‘Electric poten-
tial’. Energy is nice and easy; entropy is messy. If
only we didn’t have to bother with entropy (and by
using rigid protein models we have already removed
quite a lot). But we do.

Attempts to make ligand affinity predictions
using only energy terms have not been successful,
and there is no theoretical basis for assuming they
might be. Recently for example Luque and Freire
have attempted to find a simple parameterisation
of binding enthalpy of small ligands binding
to proteins [2]. They write ‘‘Because the binding
enthalpy is the term that predominantly reflects the
strength of the interactions of the ligand with its
target relative to those of the solvent, it is desirable
to develop ways of predicting enthalpy changes from
structural considerations.’’ In the same article they
continue ‘‘Because the magnitudes of the enthalpy
and entropy changes reflect different underlying
interactions, ligands that have been enthalpically or
entropically optimised exhibit different responses to
changes in the target or the environment, even if
they have the same affinity under the initial set of
conditions.’’ Neither statement is justified (by
citation or theory), but the authors have at least
clearly stated the premise on which they are
working, rather than hide their assumption. The
best way to show entropy cannot be ignored is
perhaps with a simple example, of alkanes being
dissolved in water. This is a simple example which
nicely illustrates some of the problems we are
dealing with. It has been known for almost
70 years that dissolving hydrocarbons in water
results in a large increase in heat capacity. The
underlying cause of this has been widely discussed,
but is generally agreed to result from greater
ordering of the solvent water around the solute.

This causes a large decrease in entropy, and
around room temperature it is found that the
enthalpy change is close to zero. So the low
solubility of alkanes in water is due to an entropic
effect at room temperature. But, the heat capacity
change is large, and by definition

DCp ¼ dDH
dT
¼ d

dT

DS
T

So as temperature changes, both the enthalpy and
entropy changes change too. Since the overall free
energy change (assuming constant temperature of
reaction) is given by

DG ¼ DH� TDS

these changes largely cancel – the well-known
enthalpy–entropy compensation – to leave DG
relatively constant [3]. This does not mean the
solubility of alkanes is independent of tempera-
ture. An equilibrium constant is related to DG by
the equation

DG ¼ �RT lnK

so the natural logarithm of the equilibrium con-
stant varies with DG/T and not simply DG. In fact it
is fairly easy to show that (dDG/dT) equals DS, so
DG will be at a stationary value when the entropy is
zero. More interestingly, the Gibbs–Helmholtz
equation tells us that at constant pressure

d

dT

DG
T

� �

¼ �DH

T2

This can be rewritten as the van’t Hoff equation:

d

dT
lnKð Þ ¼ DH

RT2

As temperature is varied therefore, the equilib-
rium constant K will pass through a maximum or
minimum value at precisely the point DH drops to
zero; whether we have a maximum or minimum
depends on the sign of the heat capacity. In the
case of alkanes dissolving in water, the forward
reaction increases heat capacity so we have a
minimum. At the temperature for which DH is
zero, the solubility drops to a minimum. The heat
capacity change itself is linear to a good approx-
imation, over the temperature range of mammalian
biochemistry anyway. The solubility of alkanes in
water therefore describes a parabolic curve as
temperature is increased from 0 to 40 �C and
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beyond. (This gives rise to the half-truth sometimes
still found in text-books that ‘‘Hydrophobic bonds
become stronger at higher temperature’’). This
phenomenon explains a great deal of protein
biochemistry, from cold denaturation to subunit
dissociation at high or low temperatures. The
hydrophobic effect is strongest around room tem-
perature, though the temperature of minimum
solubility is slightly different for aliphatics and
aromatics, which are more polar.

The point I am trying to make is that it is not
really possible to ascribe the insolubility of
alkanes to the observed entropy or enthalpy since
both will change with the conditions of the
experiment while the underlying phenomenon
remains the same. Hydrophobicity is not called
different names for experiments at 20, 30 or
40 �C. Entropy–enthalpy compensation blurs the
distinction between the two while largely preserv-
ing the overall free energy change. There has been
enormous confusion in the literature concerning
the hydrophobic effect, much of it arising in my
view because of a confusion between DG and
DG/T. Essentially ‘hydrophobicity’ became asso-
ciated with a large DG value in the minds of some
authors, instead of a low solubility value (which
is what it had meant and still means to everyone
else). Since DG reaches a maximum when DS is
zero, it was believed ‘hydrophobicity’ must arise
from enthalpic considerations.

Another related mistake is also frequently
found in the literature, that of assuming that an
apolar ligand binding to an apolar pocket in a
protein must bind through an increase in the
system entropy – a positive DS. But the chemistry
involved is rather more complicated than a two-
component oil–water mixture, and this assumption
does not hold. Recently for example, Palencia and
colleagues have found that proline-rich peptides
bind to an SH3 domain with a favourable enthalpy
change and an unfavourable entropy change [4].
They suggest this is ‘inconsistent’ with the known
molecular structures which show the ligand and its
binding site to be largely apolar. There is no
inconsistency, just a growing list of papers whose
authors puzzle unnecessarily over this frequently
observed phenomenon.

To my mind enthalpy–entropy compensation is
no difficulty to ligand modelling as long as one
tries to predict binding affinity. Predicting enthalpy
and entropy separately seems to me an extremely

difficult task, and for the purpose of drug design
not really a necessary one. Luque and Freire [2]
note that it is possible to parameterise the enthalpy
of denaturation of a protein from its structure, but
these parameters prove unsuccessful in predicting
the enthalpy of ligand binding. There are several
issues here. As the authors note, the dataset used is
rather small, and the errors in the measured
enthalpies of ligand binding are comparatively
large since the values are smaller than the enthalpy
of unfolding. The same group has attempted this
sort of parameterisation before, but no mention of
the previous scheme [5] is given in the latest paper.
It is always possible to divide up the measured
affinity and enthalpy into components, but the
values derived for the worth of a hydrogen bond
or a square Angstrom of apolar surface area are
not always found to be reliable outside the dataset
used to calculate them. In the same way, it is
simple to multiply two large prime numbers
together, but very difficult to factorise the result.

Many different groups have produced different
schemes for estimating binding affinity on the
basis of X-ray structures of various protein–ligand
complexes. In general these work fairly well in
good cases (where the rigid body assumption is
valid), but the scoring weights for hydrogen bonds
and so on show considerable variation [6]. Very
good agreement within the base dataset is a poor
indicator of how well the scheme will cope with
new complexes. (From a simple statistical view-
point, it is often worthwhile omitting a small
portion of the data for use as a test-set to give an
unbiased estimate of how well the model derived
from the ‘working’ data truly model the whole
data-set. This type of cross-correlation analysis
revolutionised the way X-ray crystallographers
regarded traditional R-factors of their atomic
models). Enthalpy–entropy compensation seems
to improve significantly the accuracy in predicting
energy, whereas estimates of enthalpy (or entropy)
alone do not have this advantage. Clearly the
physical phenomena underlying ligand binding
to proteins and protein folding are the same, and
if we understood them perfectly then we could
no doubt predict the thermodynamics of both
processes. But scoring functions are inherently
approximations, and very different assumptions
are made concerning the protein entropy change in
the two cases. For ligand binding it is generally
assumed to be zero (or very close), a wholly
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inappropriate assumption for the case of protein
folding. So it is not altogether surprising to find
that other groups have noted systematic differ-
ences in the weights derived from ligand binding
and protein folding [7]. The very large entropy
term in the protein folding case is absorbed into
the derived parameters. Theoretical calculations
suggest that a small molecule binding to a protein
will also incur a large entropy penalty, but to date
no experimental data support such a view.

A number of methods rely on the calculation of
buried surface areas. In itself this is not a compli-
cated idea, but it is important to be careful what is
meant. There are at least three different types of
‘surface area’ used in molecular modelling [8], and
even more programs to calculate them. The fol-
lowing extract from an email to PDB (the Protein
Databank, now held at Rutgers University) in 2001
is fairly typical:

Does anybody have a list of molecular surface
areas of all residues in extended conformations? Or
knows where to find it? I’m trying to calculate
surface areas and I get different numbers from
different programs. For example, Leu has area of
115 Å2 from one program and 300 Å2 from another.
Which one is closer to the truth?

While the larger value may represent the main-
chain as well as the side-chain, the smaller value is
still much smaller than the 180 Å2 reported by
Miller and colleagues [9]. So there is huge varia-
tion, and not all programs give a clear description
of what they are doing. The program WHATIF is
claimed to reproduce the accessible molecular
surface area to within 5%, the difference being
that it does not take the re-entrant surface into
account. Personally I think an error of 5% in this
term pretty good, though one referee of this paper
begs to differ on this point.

Protein flexibility

As an example of the difficulties in predicting
binding affinity from an atomic model of the
protein complex, Figure 1 shows the data obtained
from an isothermal titration calorimeter on adding
aliquots of tryptophan to the tryptophan attenua-
tion RNA-binding protein, TRAP [10]. TRAP
binds to the trp mRNA of Bacillus subtilis in a
tryptophan-dependent manner. The protein is an
11-mer ring with identical subunits, the tryptophan

molecules binding at 11 symmetry-related sites at
the monomer interfaces. From the calorimeter trace
it can be seen that the initial tryptophans bind
exothermically, and increasingly so over the first
few injections (the system has positive cooper-
ativity). The experiment shown in Figure 1 was
performed at 25 �C. Repeating the same experiment

-6

-4

-2

0

0 2000 4000 6000 8000 10000

Time (sec)

µc
al

/s
ec

0 10 15 20 25 30

-8

-6

-4

-2

0

Molar Ratio

kc
al

/m
ol

e 
of

 in
je

ct
an

t

5

Figure 1. The isothermal titration calorimetry trace obtained
on injecting L-tryptophan ligand into TRAP in 50 mM so-
dium phosphate pH 7.2 at 25 �C. The ligand concentration
was 2.4 mM and the initial protein concentration 21.8 lM. A
total of 37 injections were made, the first 12 of 3 ll and the
remainder 10 ll. The downward deflection in the trace of the
power supplied to the sample cell (shown in the upper panel)
indicates an exothermic reaction occurs on mixing ligand and
protein. The integrated heats are shown in the lower panel as
black squares, and the line indicates the heat per mole ex-
pected given a model of two sites. The first three data points
show an increase in the heat released per mole of tryptophan
injected. Often in ITC the first data point proves unreliable
due to diffusion during the thermal equilibration of the
instrument immediately prior to an experiment. The initial
data point has not been omitted from any of the experiments
presented here. Small injections were used at first in order to
observe the highly reproducible increase in exothermicity,
seen at all temperatures studied. This effect cannot be mod-
elled assuming independent binding sites.
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at 12 �C (shown in Figure 2), DH rises rapidly to
become endothermic for the last few ligands. This
very marked change in the enthalpy of binding (of
the same ligand to identical binding sites) is
incompatible with the view that DH must reflect
the molecular contacts between a protein and
ligand. Despite its rigid appearance, the TRAP
ring is clearly capable of cooperative behaviour,
through a mechanism much more subtle than that
of haemoglobin. Further studies are underway on
this system, but these early results are already a
conclusive demonstration of the difficulties in
affinity prediction, let alone enthalpy prediction,
by simple linear models. This problem is not
confined to proteins with a single ligand binding
site. A protein has considerable flexibility and we
currently have no simple means of estimating how
much its intrinsic entropy will be changed by ligand
binding. There are also plenty of examples of
proteins whose binding sites substantially alter on
ligand binding. It is an inherent assumption of

simple scoring functions that these effects are small,
though as shown above it is quite possible for the
enthalpy and entropy terms to change sign.

Conclusion

There has been considerable progress in ligand
scoring in the 5 years since I wrote my previous
review of scoring functions [6], and computational
methods are contributing more and more to drug
discovery and design [11, 12]. In a 2002 review of
ligand docking and scoring functions, Nussinov
and colleagues cited nearly 300 papers [13]. This
has been aided by the growing number of well-
characterised systems in which both accurate
thermodynamic data and a high resolution X-ray
structure of the protein–ligand complex are avail-
able. More groups are focussing on the problem of
flexibility of both protein and ligand, which clearly
must be addressed if present scoring functions are
to improve significantly in accuracy and precision
[14]. Fitting hydrophobic ligands into an apolar
pocket in a computer often gives a very broad
potential energy well as the ligand can slide or
rotate while maintaining hydrophobic contacts.
Crystallography suggests however that even almost
entirely hydrophobic drug molecules can adopt one
highly preferred conformation in their binding
sites, indicative of a much steeper potential energy
well than the modelling studies suggest. To be fair,
in some cases this may result from low resolution
X-ray data, or inappropriate weighting of geomet-
rical restraints. Nevertheless, simple scoring func-
tions are clearly capable of rapid screening with
appreciable success, and compensating to some
extent for inaccurate docking. Kontoyianni and
colleagues have recently presented an interesting
comparison of 10 scoring functions judging ligands
placed by four different docking engines, and show
that the scoring functions can discriminate suc-
cessfully between accurate and inaccurate ligand
poses [15]. While scoring functions have already
demonstrated great potential in rapid lead selec-
tion, it remains questionable whether or not the
inherent assumptions on which they are based will
permit reliable, general affinity estimation. Simply
associating a protein–ligand complex with a mea-
sured Kd value ignores a great many variables
including temperature, pH, and the nature of
the biophysical technique employed in affinity
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Figure 2. The same experiment shown in Figure 1, but at
12 �C. In this case the last ligand molecules to bind do so en-
dothermically.

450



measurement. But the next 100 years may have a
few more surprises in store.
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